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Abstract
We first discuss magnetic excitation and relaxation processes which have
already been recognized experimentally by muon spin relaxation experiments.
Our examples are taken from experiments performed on strongly correlated
electronic systems, magnetic metals and geometrically frustrated magnetic
compounds. In another part, focusing on the flux-line lattice in the Bragg-
glass phase of superconductors, we show that a muon spin experiment can
provide information on the in-plane correlation length of the lattice.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this article we have chosen to focus on some mechanisms already recognized experimentally
which may induce a relaxation of the muon spin in magnetic materials as observed by positive
muon spin (µSR) experiments. This relaxation is studied in the best way by the longitudinal
field technique which allows us to measure the so-called longitudinal polarization function,
PZ (t) (see e.g. Schenck and Gygax 1995, Karlsson 1995). Z is the axis of the initial muon
beam polarization and also the direction of the applied external field, Bext , if any. In fact, here
we shall assume Bext = 0 for the measurement of PZ (t). In addition, we report on a recent
theoretical development which indicates the possibility of measuring the in-plane correlation
length of the Bragg-glass phase of the flux-line lattice of a superconductor. In this case the
transverse-field µSR technique is used (see e.g. Sonier et al 2000), in which Bext is still applied
along the Z axis but now it is the polarization function PX (t) which is measured. The X axis
is perpendicular to Z .

In the next section we provide a theoretical background to understand the relation between
the muon spin–lattice relaxation rate, λZ , and the magnetic correlation tensor or the generalized
susceptibility tensor. We restrict ourselves to homogeneous magnetic systems for which PZ (t)
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is basically expected to be an exponential function characterized by λZ , if the dynamics is
sufficiently fast. Some experimental examples are presented in the third section. This is
followed by a discussion of the field distribution in superconductors. In the last section we
have gathered some conclusions.

A large number of µSR reviews on magnetism have been written. We mention three
of them which are easily accessible: Dalmas de Réotier and Yaouanc (1997), Amato (1997)
and Sonier et al (2000). The first review covers magnetic materials in general, whereas the
last two are specialized: on strongly correlated electronic systems and on vortex matter in
superconductors, respectively. We mention that a monograph discussing the applications of
the µSR techniques to condensed matter science by Yaouanc and Dalmas de Réotier is in
preparation.

2. Excitations and fluctuations; theoretical background

Since our main purpose here is only to give a feeling of the physical meaning of λZ , for
simplicity we shall assume a single-crystal sample with one magnetic ion per unit cell and
crystallographically oriented such that the relevant axes of the crystal and of the laboratory are
parallel. As for nuclear magnetic resonance (NMR), we can write λZ as an integral over the
first Brillouin zone (see e.g. Dalmas de Réotier and Yaouanc 1997):

λZ = D
2

1

V

∫ ∑
β,γ

Aβγ (q) �βγ (q, ωµ = 0)
d3q

(2π)3
, (1)

where we have defined for convenience

Aβγ (q) = G Xβ(q)G Xγ (−q) + GYβ(q)GYγ (−q). (2)

By definition {β, γ } = {X, Y, Z} and D = (µ0/4π)2 γ 2
µ (gµB)2 where g is the spectroscopic

splitting factor, e.g. the Landé factor for a rare earth, µB is the electronic Bohr magneton and
γµ the muon gyromagnetic ratio (γµ = 851.6 Mrad s−1 T−1). V is the volume of the sample.
We use the international system of units. λZ depends basically on two quantities:

(i) the coupling between the muon spin and the spins of the compound encoded in G, and
(ii) the correlation tensor Λ (of spins J) we are interested in.

That tensor is probed at ωµ = γµ Bloc where Bloc is the local field at the muon site. In this work
we assume ωµ = 0. This is strictly correct for zero-field measurements performed outside
the ordered phases of a magnetic material and only an approximation when an ordered state is
probed. Interpreting λZ as the muon spin–lattice relaxation rate, equation (1) is a well known
NMR expression (see e.g. Moriya 1962).

We shall need Gαβ(q). These tensor elements are not analytical near q = 0. This is due
to the long range nature of the dipole interaction between the muon spin and the unpaired
electron spins of the compound (Yaouanc et al 1993). From this reference we write

Gαβ(q −→ 0) = −4π

[
Pαβ

L (q) − Cαβ(q = 0) − rµ H

4π
δαβ

]
, (3)

where Pαβ

L (q) = qαqβ/q2 is an element of the longitudinal projection operator, Cαβ(q) is
analytical for all values of q, rµ the number of nearest neighbour magnetic ions to the muon
localization site and H the hyperfine constant. It is PL(q) which takes care of the non-
analyticity of G(q) near the zone centre since it is only piecewise continuous as q −→ 0.
C(q = 0) can be a scalar, i.e. Cαβ(q = 0) = (1/3)δαβ . This particular form holds for
example for a muon in a tetrahedral or octahedral site of a face centred cubic crystal.
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A theorem, known as the fluctuation–dissipation (Nyquist’s) theorem, links thermal
fluctuations of the spins described by a correlation function to a related generalized
susceptibility function. Since here we focus on ωµ = 0, the expression of the theorem is
relatively simple (see e.g. Lovesey 1986):

�αβ(q, ωµ = 0) = 2V

µ0g2µ2
B

kBT lim
ωµ−→0

Im{χαβ(q, ωµ)}
ωµ

. (4)

Taking Λ to be a scalar and assuming the correlation to decay exponentially in time,

�αα(q, ωµ = 0) = 2V

µ0g2µ2
B

kBT
χαα(q)


α(q)
. (5)

The time-integrated correlation function of mode q is therefore proportional to the wavevector-
dependent static susceptibility of that mode and inversely proportional to the relaxation rate
of the same mode. That rate, also called the linewidth, is the half width at half maximum of
the quasi-elastic excitation. The reader has probably noticed that we are using the language of
scientists involved in scattering experiments. It is also suitable for describing results from local
probe techniques such as the µSR ones. This has long been recognized by people practicing
solid state NMR.

We have chosen to start our investigation of processes which can induce a relaxation of
the muon spin by discussing the magnon excitation process.

2.1. Magnon excitations

We first consider a simple ferromagnet with isotropic exchange interactions limited to nearest
neighbour magnetic ions. The Hamiltonian for that system is written as

Hsys = −J
∑
i,i ′

Ji · Ji ′ + gµB Bani

∑
i

J Z
i with J > 0. (6)

For a rare-earth ion the exchange constant J has to be replaced by J (g − 1). The anisotropy
of the system is accounted for by the anisotropy field Bani assumed to be parallel to the Z
axis. We shall find important to include that term to get a mathematically sound result. It is
justified physically since a ferromagnet is always anisotropic. An obvious source of anisotropy
is the dipole interaction between the magnetic ions. The form introduced for the anisotropy
field is not always mathematically justified, in particular for the dipole interaction. However,
it is simple enough that a reliable physical result is easily obtained. Since the energy of an
excitation is minimum at the zone centre, the sum over q in (1) is dominated by the small q
region. Hence, it is justified to use the small q limit of G(q). In the same limit and for a
cubic lattice of cube edge a, the magnon dispersion relation has a well known expression (see
e.g. Lovesey 1986):

h̄ωq = gµB Bani + DFMq2 with DFM = 2J Ja2. (7)

We use the linear spin-wave approximation.
Because of energy conservation, two magnons are required to relax the muon spin

(Yaouanc and Dalmas de Réotier 1991). One magnon is annihilated and a magnon is created by
the magnon–muon spin scattering. We are therefore dealing with a Raman scattering process.
This means that only �Z Z (q, 0) contributes to the relaxation at the level of the linear spin-
wave approximation. As a consequence, the hyperfine coupling which is usually isotropic is
not relevant to the magnon-induced relaxation. This is derived from (2) since only the non-
diagonal terms of G contribute to the relaxation as β = γ = Z . The following formula is
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derived:

λZ = 2(2π)3h̄D
{

2
15 +

[
C X Z (q = 0)

]2
+

[
CY Z (q = 0)

]2
}

× 1

V 2

∫
n

(
E

kBT

) [
n

(
E

kBT

)
+ 1

]
g2

m(E) dE . (8)

We have introduced the Bose function

n

(
E

kBT

)
= 1

exp
(

E
kB T

) − 1
, (9)

and the density of magnetic excitations gm(E). We display explicitly the temperature
dependence of the Bose function to indicate the origin of the temperature dependence of
the spin–lattice relaxation. This result is written in a physically appealing form: the two Bose
functions stand for the creation and annihilation of the two excitations and a density of states is
associated with each of them. gm(E) can be computed for the dispersion relation given at (7).
Finally we get

λZ = h̄Dk2
B

π

{
2

15
+

[
C X Z (q = 0)

]2
+

[
CY Z (q = 0)

]2
}

T 2

D3
FM

ln

(
kBT

gµB Bani

)
, (10)

for temperatures such that gµB Bani � kBT � Emax where Emax is the maximum energy of the
magnons (Dalmas de Réotier and Yaouanc 1995); for temperatures such that gµB Bani � kBT
one finds that there is no magnon-induced relaxation, the anisotropy energy being so large
relative to the thermal energy that the system is frozen in its ground state. λZ is found to be
approximately quadratic in temperature as already discovered by Mitchell in 1957 for NMR.
From the analysis of λZ , the value of the magnon stiffness constant can be extracted.

A similar formula to that written at (8) is also valid for antiferromagnets. The main
difference is that g2

m(E) must be substituted with gm(E)hm(E) where hm(E) is a weighted
density of states. The fact that such a density appears instead of a simple density is not
unexpected. For a now famous example in the context of NMR, see Mila and Rice (1989).

Obviously, magnons are also basic excitations in itinerant magnetic systems. The
framework we have presented can be used to describe their effect on λZ .

2.2. Localized spin fluctuations

We now shift our interest to the paramagnetic state, focusing first on systems characterized by
localized magnetic properties. A key quantity is the static wavevector-dependent susceptibility
χQ0(q). Q0 denotes the wavevector of the magnetic structure; Q0 = 0 for a ferromagnet.
Explicitly, in the molecular field approximation

χQ0(q) = µ0

v0

g2µ2
B J (J + 1)

3kBTc

1

δ +
[
1 − J (q)

JQ0

] , (11)

with δ = (T − Tc)/Tc. Tc is the Curie (Néel) temperature for an (anti-)ferromagnet. v0 is the
volume per magnetic ion and J (q) the Fourier transform of the exchange interaction,

J (q) = J
∑

i

exp (−iq · i) . (12)

We define JQ0 = J (Q0). If δ � 1, i.e. if the temperature is much higher than Tc, χQ0(q)

becomes wavevector independent and is given by the well known Curie–Weiss law:

χ0 = µ0

v0

g2µ2
B J (J + 1)

3kB (T − Tc)
. (13)
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χ0 is the uniform susceptibility. In the same limit the linewidth is also temperature independent;
see e.g. Lovesey (1986). Hence, λZ becomes temperature independent at high temperature.
Neglecting the hyperfine interaction,

λZ = 2�2
ZFτex with �2

ZF =
( µ0

4π

)2
γ 2

µg2µ2
B

J (J + 1)

3

N∑
i=1

1

r3
i

(
5 − 3 cos2 θi

2

)
. (14)

θi is the polar angle of the radius vector ri connecting the muon to ion i . The exchange
fluctuation time is τex = √

π/2/ωex with

ωex =
√

8J 2z J (J + 1)

3h̄2 , (15)

where z is the number of nearest magnetic ions surrounding each magnetic ion. This is a result
published by Moriya (1956a and 1956b).

As a matter of fact, the predicted temperature independence of λZ at high temperature is not
always observed because the localized magnetic moments may also be relaxed by the phonons
or the conduction electrons of the specimen. These relaxation channels usually involve the
crystal field energy levels of the ions, in particular in compounds containing rare-earth ions.
Here, following Hartmann et al (1986), we discuss the relaxation of a spin-1/2 ion arising from
its interaction with the conduction electron density. This is the Korringa relaxation mechanism.
We can still write λZ = 2�2

ZFτc, but with the correlation time τc given by the formula

1

τc
= 1

τex
+

1

τf−e
, (16)

where τ−1
f−e is the ion–electron relaxation rate. As it is well known,

1

τf−e
= 4π

h̄

[
(g − 1)Jf−e n(EF)

]2
kBT . (17)

Here, n(EF) is the conduction-electron density of states per spin direction and Jf−e the
exchange interaction between the ion spin, Ji , and the conduction-electron spin at the ion
site so that the Hamiltonian is written

Hf−e = −Jf−eJi · σ (18)

where σ is the Pauli vector operator for the conduction-electron spin. A stable f electronic
configuration is assumed, i.e. there is no Kondo effect.

As first pointed out by Silbernagel et al in 1968 (see also Hartmann et al 1986), the sign
of the exchange interaction may have a profound effect on λZ (T ). An expansion in 1/T for
the Heisenberg Hamiltonian leads to

λZ (T ) = λ
(∞)
Z

(
1 + α

θCW

T

)
, (19)

where λ
(∞)

Z is the value of the spin–lattice relaxation rate computed from (14) and α is a constant
which, within an order of magnitude, is equal to one. θCW is the Curie–Weiss temperature
which is positive for ferromagnets and negative for antiferromagnets. Hence, as the sample
is cooled, λZ increases or decreases if the muons probe ferromagnetic or antiferromagnetic
pair correlations among its neighbours, respectively. The weight of the second term on the
right-hand side of (19) depends drastically on the spin configuration around the muon and may
even vanish. For the sake of simplicity, let us assume the muon spin to interact only with its
nearest neighbour spins in the lattice. If there is only one such atom nearby the muon, pair
correlations cannot influence the muon spin and α = 0. On the other hand, if two magnetic
atoms interact with the muon, α �= 0.
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2.3. Crystal field excitations

As just pointed out, in f electron systems crystal electric field (CEF) effects are expected to
be important. A framework to deal with them is sketched elsewhere (Dalmas de Réotier et al
1996). Here, we assume a system of paramagnetic ions at high temperature with a CEF energy
level located at an energy much higher than the thermal energy of the system. The f magnetic
moments may fluctuate through a two excitation process. The two excitations involved are
usually phonons and then we are dealing with a so-called Orbach process (Orbach 1961). In
this simple case λ−1

Z = A + Bme exp [−�e/ (kBT )]. �e is the energy of the excited CEF level
involved. A � λ−1

Z if the temperature is not too high. At higher temperature λZ decreases.
The constant Bme models the magneto-elastic coupling of the f moments with the phonon bath.

2.4. Itinerant spin fluctuations

There is a relationship between λZ and the muon Knight shift, Kµ, derived a long time ago by
Korringa (1950):

λZ = 4πkBT K 2
µ

h̄

(
γµ

γe

)2

. (20)

This law written originally for NMR is approximately obeyed experimentally. However, this
relaxation mechanism is usually not strong enough to induce a visible muon-spin relaxation.
This can be understood because the muon Knight shift is usually small relative to the shift
observed in NMR.

There is a family of ferromagnetic and antiferromagnetic metallic compounds, the so-
called weak itinerant magnets, characterized by relatively low ordering temperatures and
small magnetic moments. Their magnetic properties arise from their conduction electrons
and their long-range order is lost due to the vanishing amplitude of the magnetic moments
at the ordering point. This behaviour is in marked contrast to a compound with localized
electrons for which the long-range order is destroyed by thermal excitations, i.e. by spin waves.
Originally, these metals comprised only compounds based on 3d elements. However, recently
intermetallics made of f elements have been found to exhibit some similar magnetic properties.
The description of these itinerant magnets rests on the recognition of the importance of the low-
energy spin fluctuations, using either a self-consistent renormalization theory (SCR, Moriya
1985) or a phenomelogical Landau–Ginzburg expansion (Lonzarich and Taillefer 1985). We
shall assume isotropic fluctuations.

Since only long-wavelength fluctuations matter, the Ornstein–Zernike approximation for
the susceptibility, i.e. the long-wavelength limit of (11), is believed to be adequate in the whole
temperature range above the ordering point:

χQ0(q) = χ0

1 + (q/κ)2 with κ = κ0

√
T − Tc

Tc
. (21)

ξ = 1/κ is the magnetic correlation length. Amazingly, χ0 is still given by the Curie–Weiss
law. The magnetization arising from the conduction electrons can be viewed as a stochastic
variable with a variance 〈(δM)2〉. From the fluctuation–dissipation theorem, 〈(δM)2〉 obeys
the sum rule

〈(δM)2〉 = 3 kBT

2π2µ0

∫ qu

0
χQ0(q)q2 dq. (22)

It is assumed that the energy of the magnetic fluctuations is smaller than the thermal energy.
We have introduced the upper cut-off qu . Obviously, qu cannot be greater than the radius
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of the Brillouin zone. Interestingly, the previous formula gives a relation between the
magnetization, and therefore the magnetic moment per unit volume v0

√〈(δM)2〉, and the
wavevector-dependent static susceptibility. v0 is the volume per magnetic atom.

The linewidth of the paramagnetic fluctuations depends on their nature. For ferromagnetic
fluctuations

h̄
Q0(q) = Fq
[
χQ0(q)

]−1
, (23)

where F is a constant which sets the scale of the linewidth. Using the Ornstein–Zernike form,

h̄
Q0(q) = F
χ0

q

[
1 +

(q

κ

)2
]

. (24)

This linear decay at small q , known as the Landau damping, assumes a ballistic motion of the
quasi-particles at the Fermi level. It may break down in the presence of strong disorder. The
spin–orbit interaction is assumed to be negligible. Otherwise the total magnetization would
not be conserved and the expression we give for the linewidth would not be justified. For an
antiferromagnet

h̄
Q0(q) = A(q2 + κ2). (25)

Because the staggered magnetization is not a conserved quantity, 
Q0(q) does not vanish for
antiferromagnetic fluctuations at small wavevectors. The scaling constants F and A can be
computed from the band structure near the Fermi surface.

From (1), we generally expect for isotropic long-wavelength fluctuations

λZ ∝ kBT
∫ qu

q�

χQ0(q)


Q0(q)
q2 dq. (26)

We have introduced the lower cut-off q�. This will be justified hereafter.
With this material at hand, it can be shown for a ferromagnet that λZ ∝ T/(T − TC) and

λZ ∝ T/(T − TN)1/2 for an antiferromagnet, both valid in the limit κ � qu (Moriya and Ueda
1974).

In contrast to compounds with localized fluctuations, magnetic fluctuations are known to
exist in the ordered state of weak itinerant metals, and so may contribute to the spin–lattice
relaxation. The perpendicular (to the easy axis taken as the Z axis) response is much larger
than the parallel one, resembling the result for the Heisenberg model where the tilting of the
localized spins, which induces a perpendicular spin component, is the driving mechanism for
spin dynamics. Therefore, to a good approximation,

λZ = D
2

1

V

∫ [AX X (q) + AY Y (q)
]

�⊥(q, ωµ)
d3q

(2π)3
. (27)

In the ordered state of a magnet (see e.g. Chaikin and Lubensky 1995)

χ⊥
Q0

(q) = χQ0( q
κ

)2 = χQ0κ
2

q2
. (28)

With this expression for the susceptibility, (24) and (27) and the susceptibility dissipation
theorem, we get λZ ∝ T/q�

2 for a ferromagnet far below the Curie temperature. We have
assumed q� � qu . If we had taken q� = 0, λZ would be infinite. This is clearly unphysical
and justifies a finite value for q�. How do we chose this cut-off? We notice that a given
energy band near the Fermi energy may split under the action of the spontaneous field into two
bands. A simple choice for q� is the minimum momentum for a fluctuation to occur taken as
q� = kF↑ − kF↓, where kF↑ (kF↓) is the momentum of the majority (minority) spin electrons
near the Fermi level (Lonzarich and Taillefer 1985). Assuming this momentum difference to
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be proportional to the spontaneous magnetization, M0, we deduce that λZ ∝ T/M2
0. This

is the thermal behaviour which was predicted by Moriya and Ueda in 1974. Hence, we do
not expect λZ to be proportional to the temperature at relatively high temperature because of
the thermal dependence of M0. The same model, but applied to an antiferromagnet, predicts
λZ ∝ T/MQ0 where MQ0 is now the staggered magnetization (Moriya and Ueda 1974). It
has been assumed that q� ∝ MQ0 .

2.5. Critical spin fluctuations

When a system is at or close to a critical point, anomalies occur in a wide variety of static and
dynamical properties, most commonly discussed within the theory of critical phenomena. This
theory concerns continuous phase transitions and therefore excludes first-order phase transi-
tions characterized, for example, by magnetic hysteresis or latent heat at the ordering point.

A central concept of the theory of critical phenomena is the universality class. Since the
study of critical phenomena concerns the behaviour of a system whose correlation length is very
large compared with interatomic spacings, the many details of the microscopic Hamiltonian
is unimportant. It follows that systems near a critical point can be divided into broad groups
known as universality classes, such that all members of a given class have identical critical
properties. It is found experimentally that static and dynamic physical properties usually
follow simple power laws near critical points. A critical exponent is associated with each law.
A universality class is characterized by a set of critical exponents (see e.g. Collins 1989).

Here, we analyse the behaviour of λZ near a second-order phase transition. That quantity
probes the dynamics. The universality concept for dynamical properties is valid if the
universality classes defined for static properties are expanded to specify conservation laws (see
e.g. Halperin and Hohenberg 1977). For example, this means that two classes are needed for
the description of the physics of the Heisenberg model in three dimensions. The ferromagnets,
for which the order parameter is a conserved quantity (it is the uniform magnetization) form
one class. In the other class are found all the collinear antiferromagnets for which the order
parameter (the staggered magnetization) is not conserved. To account for the critical dynamics,
an exponent usually denoted z is introduced. The critical exponents are listed, for example,
by Hohenemser et al (1989).

As the critical temperature is approached, some fluctuation modes slow down, and the
response time tends to infinity at the critical point. Because of the slowing down process, λZ is
usually expected to display a maximum at the ordering point. The analysis of its behaviour in
the vicinity of Tc provides information on the universality class of the compound under study.

We shall first focus on the critical dynamics of ferromagnets; see Yaouanc et al (1993)
and the review of Frey and Schwabl published in 1994. The Hamiltonian of the system is
the sum of the Heisenberg and dipole contributions. Although the dipole interaction between
the magnetic ions is weak relative to the Heisenberg interaction, it gains importance near TC

due to its long-range nature. This is so because only the long wavelengths are of importance
in the critical regime. Mathematically, it means that it is sufficient to keep the terms in the
system Hamiltonian up to second order in wavevectors, that is, for cubic systems with lattice
parameter a,

Hsys � v0

∫ ∑
α,β

{[−J0 + J1q2a2] Pαβ

T1
(q) +

[−J0 + J1q2a2 + J1q2
Da2] Pαβ

L (q)
}

× J α(q)J β(−q)
d3q

(2π)3
. (29)

J0 and J1 are exchange parameters and Pαβ

T1
(q) = δαβ − Pαβ

L (q). The ratio of the dipole to
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Figure 1. The two functions I L,T1 (ϕ) versus 1/ tan(ϕ) = 1/(qDξ). The functions I L(ϕ) and
I T1 (ϕ) account, respectively, for the contributions of the longitudinal and transverse (to the
wavevector q) fluctuations to the muon spin–lattice relaxation. qD is the dipole wavevector and
ξ the correlation length. Only ξ depends on the temperature. The slope of the two functions for
qDξ � 1 is 3/2. The slope of I T1 (ϕ) in the low-temperature regime (qDξ � 1) is unity. From
Frey and Schwabl (1994).

exchange interaction is characterized by the dimensionless parameter

(qDa)2 = µ0

v0

(gµB)2

2J1
. (30)

qD is the dipole wavevector. The structure of (29) is remarkable. If the strength of the
dipole interaction is neglected, i.e. qD = 0, the terms in the curly bracket sum up to
(−J0+J1q2a2)δαβ . We recover the usual long-wavelength limit of the Heisenberg Hamiltonian
with its single length scale ξ such that ξ2 ∝ J1. The dipole interaction introduces a second
length scale proportional to 1/qD and the Hamiltonian is no longer scalar in q space. Since the
Hamiltonian is a weighted sum of Pαβ

T1
(q) and Pαβ

L (q) for each fluctuation mode, we expect
λZ to be given also as a weighted sum of two terms:

λZ = W [
aT1 I T1(ϕ) + aL I L(ϕ)

]
. (31)

ϕ is a measure for the temperature through the relation tan ϕ = qDξ(T ). The weighting
factors aT1 and aL depend only on the characteristics of the dipole and hyperfine fields at the
muon site. In practice aT1 is found to be much smaller than aL, resulting in a spin dynamics
in the vicinity of TC driven mainly by the longitudinal fluctuation modes as first noticed by
Yushankhai in 1989. The two functions I L,T1(ϕ) are displayed in figure 1. While I T1(ϕ)

exhibits a strong temperature dependence in the whole temperature range of the critical region,
I L(ϕ) is temperature independent for qDξ � 1. A numerical investigation of the region in q
space contributing to λZ shows that it is mostly sensitive to fluctuation modes near the zone
centre in a region of typical size of a few units of qD (Dalmas de Réotier et al 1994). For
example, in the case of metallic nickel at a temperature such that T − TC = 0.056 K, 90% of
λZ arises from fluctuation modes with wavevectors smaller than 0.02 Å−1.

We have discussed in some detail the critical dynamics of cubic ferromagnets because
quantitative predictions are available. We now briefly discuss the case of antiferromagnets.
Since only one length scale is at play, the following power law is derived:

λZ ∝ |δ|−� with � = ν (z + 2 − d − η) . (32)

ν, z and η are critical exponents; see e.g. Hohenemser et al (1989). d is the dimensionality of
the system, i.e. d = 3 in three dimensions.



S4696 P Dalmas de Réotier et al

3. Excitations and fluctuations: experimental examples

The intermetallic compound GdNi5 crystallizes in the hexagonal CaCu5 crystal structure and
exhibits a ferromagnetic phase transition at TC � 32 K characterized by a small dipole
anisotropy field as determined by magnetization measurements: Bani (T = 5 K) � 0.21 T.
This compound is a good model for a Heisenberg ferromagnet. The Ni magnetism is not
believed to play a role for the spin dynamics. Below about two thirds of TC, the predicted
λZ ∝ T 2 ln T law is observed with a magnon stiffness constant DFM in the proper range
(Dalmas de Réotier and Yaouanc 1997). The expected saturation of λZ as TC is approached is
also found experimentally (Yaouanc et al 1996). We recall that this saturation is the signature
of longitudinal fluctuations at play. As a matter of fact, their effect on the spin dynamics has
only been seen clearly by µSR experiments (Frey and Schwabl 1994). From ∼45 K up to
the highest temperature where λZ has been measured (340 K), λZ is found to be temperature
independent. Therefore, the density of electronic states at the Fermi level is relatively small.
This is in agreement with the conclusions derived from the analysis of µSR data taken for the
RNi5 series where R is a rare-earth element (Mulders et al 2003). Therefore, the spin dynamics
of isotropic localized magnetic moments which order in a ferromagnetic manner is reasonably
well understood in the whole temperature range. A detailed discussion has already been given
(Dalmas de Réotier and Yaouanc 1997).

Referring to the general idea that critical dynamics does not depend on the details of the
system, but only on its symmetry and the conservation law it obeys, we would expect to observe
a similar critical dynamics for localized and itinerant magnetic systems of the same universality
class. To test that idea and in relation to the work on GdNi5, a key compound is MnSi because
it is a weak isotropic magnet. It crystallizes in a cubic crystal structure (B20 lattice type) and
orders magnetically in a long-range helical structure with Tc = 29.5 K. That compound has
been the subject of many studies, including µSR works. However, the expected saturation
of λZ near Tc = 29.5 K has not been reported. In fact, the reason is that the critical region
has never been really probed. We have recently detected the saturation within the expected
temperature range. A longitudinal field of 5 mT was applied to quench the depolarization
from the 55Mn nuclear magnetic moments. The measured behaviour of λZ near Tc is therefore
not in agreement with the theory sketched in section 2.4. Even more disturbing, our data
indicate that the available theory is not able to explain the results of the measurements deep
in the paramagnetic region. Below about two thirds of TC we observe λZ ∝ T instead of the
predicted λZ ∝ T/MQ0 ; see figure 2. This is tentatively interpreted assuming that the cut-off
q� is given by a wavevector qD which is temperature independent. A detailed report of these
measurements is in preparation.

In conclusion, the muon spin–lattice relaxation rate in the critical regime of ferromagnets
is driven by the dipole interaction. This is probably independent of the nature of magnetism,
localized or itinerant. On the other hand, the mechanism of the relaxation in the ferromagnetic
state is qualitatively different: it arises from magnons in a localized ferromagnet such as GdNi5
and from magnetic fluctuations in the weak itinerant magnet MnSi.

We now focus our attention on the superconducting ferromagnet UGe2. It crystallizes
in the orthorhombic ZrGa2 crystal structure and has a Curie temperature TC � 52 K.
Magnetic measurements indicate a very strong magnetocrystalline anisotropy with an easy
magnetization axis along the a axis. The discovery of superconductivity below 1 K within a
limited pressure range provides an unanticipated example of coexistence of superconductivity
and strong ferromagnetism (Saxena et al 2000). The electronic pairing mechanism needed
for superconductivity is believed to be magnetic in origin. However, it is amazing that
ferromagnetically ordered uranium magnetic moments with such a large magnitude (mU �
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Figure 2. Spin–lattice relaxation rate λZ versus temperature measured in the ordered phase of
MnSi. A longitudinal field of 5 mT was applied along the [111] crystal axis. The solid line is the
result of a linear fit with a slope of 14.9 (1) ms−1 K−1. The SCR prediction for the antiferromagnetic
case is also shown: λZ ∝ T/MQ0 . The two fits are done for T � 22.5 K and result in chi-squares of
1.05 and 6.75, respectively. The SCR curve has been computed using MQ0 obtained from neutron
scattering (Fåk 2004 private communication). The misfit for the ferromagnetic SCR model is
obviously expected to be even worse than for the antiferromagnetic case. That the linear fit breaks
down at 25 K and above is not surprising since we are entering the temperature region where the
critical spin fluctuations should drive the muon spin relaxation. From Yaouanc et al, in preparation.

1.4 µB at ambient pressure as deduced from magnetization measurements) are directly at play.
Since the pairing must involve the conduction electrons, it is important to characterize their
magnetic properties. As the muons localize in interstitial sites, they have the potentiality to
yield information on these electrons.

The measurements have been performed at ambient pressure on two single-crystal samples.
They differ by the orientation, either parallel or perpendicular, of the a axis relative to the initial
muon beam polarization. As expected, all the µSR spectra are well described by an exponential
relaxation function characterized by λZ . A summary of λZ (T ) for the two samples is presented
in figure 3. Of most interest is λZ (T ) in the vicinity of the Curie temperature. Qualitatively,
it is quite similar to the behaviour found for GdNi5 for which the spin dynamics stems only
from the Gd3+ magnetic moments (Yaouanc et al 1996). The observed saturation of λZ as TC

is approached arises from the dipole interaction demagnetization effect on the spin dynamics
as already explained.

However, measurements under a longitudinal field show the relaxation to be suppressed
by a field as small as Bext = 2 mT. This is clearly unexpected. Yaouanc et al (2002) use this
feature to infer the size of the magnetic moments involved using the fluctuation–dissipation
theorem; see section 2.4. Here, we first note that this field corresponds to a Zeeman splitting
h̄γµ Bext. As usual in NMR, from this splitting we estimate τc = 1/(γµBext). We get τc in
the microsecond range. This is too long to be relevant to the dynamics of the mU magnetic
moments. Since we have determined a value for τc, we can estimate the size of the magnetic
moments m0 at the origin of the relaxation from the level of the relaxation. This can be
done recalling from the relaxation theory in the motional narrowing limit that λZ = 2�2τc

where � � (µ0/4π)(m2
0/r6) where r is the distance between the muon and the nearest

neighbour atoms. We get m0 � 0.02 µB at TC. This is really small and cannot be due to the
5f electrons contributing to mU. The absence of effect of mU on the measured relaxation is
surprising. It simply means that the relaxation associated with the mU moments is too small
to be measured.
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Figure 3. Temperature dependence of λZ measured for UGe2 in zero field for Sµ ⊥ a and Sµ ‖ a
in the upper and lower panels, respectively. Sµ stands for the direction of the initial muon beam
polarization. The insets display λZ (T ) near TC. The solid and dashed curves are the results of fits
for a dipolar Heisenberg ferromagnet. Since Bloc ‖ a, we cannot observe a spin–lattice relaxation
process for Sµ ⊥ a in the ordered state. The point for Sµ ⊥ a at (T − TC)/TC = 0.05 does
not fit the critical description, pointing out that it was recorded outside the critical region for that
geometrical configuration. The behaviour of λZ (T ) near TC is typical for a ferromagnet in its
critical regime. From Yaouanc et al (2002).

mU measured for UGe2 and the cubic metallic ferromagnet US (see for example
Kernavanois et al 2001a) are about equal. US is believed to be a system for which the
itinerant character of the 5f electrons is pronounced. Interestingly, from the magnetic form
factor measured by neutron diffraction and magnetization measurements, it is inferred for US
that the diffuse component of the uranium magnetic moment, i.e. the non-localized part, is
0.15 (4) µB. The same type of work for UGe2 gives for this moment 0.04 (3) µB (Kernavanois
et al 2001b, Kuwahara et al 2002). The detailed analysis of the µSR data shows that m0

arises from weak itinerant long-range magnetic correlations (Yaouanc et al 2002). This is in
agreement with the size of the diffuse component which is usually attributed to the itinerant
electrons. m0 is certainly negligible relative to mU for UGe2. In addition, m0 is far larger
for US than for UGe2. These facts strongly suggest a large fraction of the 5f electron density
to be localized in UGe2 at ambient pressure. This conclusion is supported by the result of a
positron annihilation experiment performed in the paramagnetic phase (Biasini and Troc 2003).
Analysing the shape of the x-ray magnetic circular dichroism (XMCD) spectra recorded at M4,5

for a number of uranium heavy-fermion compounds, it seems possible to infer information
on the nature of the 5f electron density (Yaresko et al 2003). Since XMCD spectra have
been recorded on UGe2 at 12 K (Dalmas de Réotier and Yaouanc 2002), their theoretical
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Figure 4. (a) µSR spectra recorded at ISIS for Yb2Ti2O7 in a longitudinal field of 2 mT. A marked
change occurs on crossing the temperature (∼0.24 K) of the specific heat λ transition. (b) Short-
time part of the PSI data at 0.200 K, confirming the absence of short-time oscillations. The slight
difference visible between the ISIS and PSI data at 0.200 K is linked with the first-order nature of
the transition and the different thermal and magnetic field histories of the two experiments. The
solid curves are the result of fits. Adapted from Hodges et al (2002).

analysis may provide additional information on the nature of the 5f electron density in this
compound.

Since the vast majority of the 5f electron density is localized, the interaction between these
electrons located on the uranium atomic sites is probably occurring via the polarized conduction
electrons. The measurements indicate the moments of these latter electrons to be approximately
0.02 µB. The conventional indirect Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction
is therefore at play in UGe2. In this picture the 5f electrons do not contribute directly to
superconductivity. It has been proposed that the superconducting pairing mechanism involves
the indirect interaction (Biasini and Troc 2003).

Geometrically derived magnetic frustration in a compound arises when the spatial
arrangement of the spins is such that it prevents the simultaneous minimization of all interaction
energies; see the review of Ramirez published in 2001. Most of the experimental studies focus
nowadays on pyrochlore and gallium garnet compounds, R2T2O7 and R3Ga5O12, respectively.
R denotes again a rare-earth atom and T a transition element. The R ions are arranged on a
motif of corner sharing tetrahedra for the pyrochlore structure. In the garnet case, the R atoms
form two interpenetrating, non-coplanar, corner sharing triangular sublattices.

The classical signature of a magnetic phase transition to a long-range order is a sharp
anomaly in the magnetic specific heat at a temperature which corresponds to the phase transition
temperature. Such a sharp anomaly is observed for Yb2Ti2O7 at Tλ = 0.24 K. Therefore,
it comes as a surprise to observe by µSR that the Yb3+ magnetic moments display only
dynamical short-range correlations below Tλ (Hodges et al 2002). Some spectra are shown in
figure 4. Whereas, as expected, exponential relaxation spectra are detected above Tλ, below
that temperature spectra typical for a disordered system are found. If the Yb3+ magnetic
moments were ordering in a coherent fashion at low temperature, we would have observed an
oscillation of the spectrum. The lack of magnetic ordering below Tλ has been confirmed by
neutron diffraction measurements. Only short-range magnetic correlations are found with a
correlation length of ∼1.5 nm.

From the analysis of the µSR spectra, we have estimated the correlation time of the
Yb3+ magnetic moments (Yaouanc et al 2003). This can also be done from 170Yb Mössbauer
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Mössbauer spectroscopy match for a Yb3+-muon spin suitable coupling constant. Below ∼0.24 K,
the fluctuation time is independent of temperature and has dropped below the lowest value which is
measurable with the Mössbauer method (dashed line). The solid curve follows a thermal excitation
law. Adapted from Yaouanc et al (2003).

0.0 0.2 0.4

0.1

1

10

Temperature T (K)

S
pe

ci
fic

he
at

(C
/R

pe
r

Y
b)

0.0 0.2 0.4

0

1

2

3

R
elaxation

rate
λ

z
(µs

−1)

Yb3Ga5O12

1 10 100

Figure 6. Zero-field muon spin–lattice relaxation rate, λZ , measured for Yb3Ga5O12. The solid
curve is the result of a fit. An Orbach process is at play above ∼100 K. Between 1 and 100 K, λZ

is temperature independent, reflecting the Yb self-correlation in the high-temperature limit. We
also display the prediction for the pair correlation in the small-1/T limit for temperatures between
0.1 and 1 K. The two straight dashed lines for T � 0.3 K down to 21 mK are guides to the eyes.
The specific heat (from Filippi et al 1980) is also reproduced for convenience. Note the change of
temperature scale near 1 K. Adapted from Dalmas de Réotier et al (2003).

absorption spectra if the correlation time is short enough. The results are presented in figure 5.
This figure shows that the specific heat anomaly corresponds to a sharp change (first order since
hysteresis is observed) in the dynamics of the Yb3+ magnetic moments (about four orders of
magnitude) instead of a long-range ordering of these moments. Note that their correlation time
is temperature independent below Tλ.

We have recently discovered that Yb2Ti2O7 is not a unique case: the garnet compound
Yb3Ga5O12 also displays a sharp specific anomaly at low temperature which does not
correspond to a magnetic ordering (Dalmas de Réotier et al 2003); see figure 6. In this case it
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Figure 7. Spin–lattice relaxation rate λZ versus temperature for Gd2Sn2O7 measured for two
values of Bext: 0 and 10 mT. The line is a guide to the eyes.

is the signature of a pronounced building up of dynamical magnetic pair correlations. Besides
the sharp anomaly, a broad hump is in fact observed at higher temperature in the specific heat of
many geometrically frustrated compounds. Our studies suggest that to observe a conventional
long-range ordering below Tλ a sufficiently large magnetic entropy has to be released at the
transition.

The physics of frustrated magnets is full of surprises. We have recently discovered that
the dynamics of rare-earth moments persists even when they order in a long-range fashion.
This is illustrated in figure 7 for the antiferromagnet Gd2Sn2O7. We measure an appreciable
spin dynamics since the muon spin–lattice relaxation rate is large, even at 20 mK, i.e. far below
TN � 1 K. This result is supported by Mössbauer spectroscopy results (Bertin et al 2002): the
correlated Gd3+ moments retain a dynamic character even at extremely low temperature.

The independence of the dynamics on the temperature is also present for Yb2Ti2O7 as
already noticed. In fact, it seems to be a generic property of geometrically frustrated magnetic
materials. It was first reported by Uemura et al and collaborators in 1994. An analysis
following the material given in section 2.1 shows that the relaxation is induced by a Raman
process. Since λZ is finite and temperature independent at low temperature, we infer that
the dispersion relation of the excitations is characterized by a gap which is proportional to
temperature. We believe it is the first time that such a feature for a gap has been recognized
experimentally.

As mentioned in the previous section, the magnetic moments which contribute to the
relaxation of the muon spin can be relaxed themselves by the phonon or conduction electron
density. The drop of λZ found for Yb3Ga5O12 above 100 K, see figure 6, is attributed to an
Orbach process in which a phonon induces a transition between the ground state doublet and
the CEF excited states located at an energy corresponding to a temperature of about 850 K.
Because of the energy conservation requirement, a second phonon is involved. An example
of a rare-earth Korringa relaxation has been presented for Er5Ir4Si10 which displays a charge
density wave order at low temperature (Galli et al 2002). λZ is affected by the formation of
the wave via the reduction of the density of states at the Fermi level, induced by the phase
transition.

The cleanest signature of antiferromagnetic short-range pair correlations has been found
recently for GdCrO4 which orders magnetically at ∼22 K (Jimenez et al 2004). As predicted
by equation (19), as this oxide is cooled from room temperature down to about 50 K, λZ

decreases monotonically.
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4. Flux-line lattices

Here, we focus on the description of the field response of a superconductor in its mixed phase,
i.e. for Bc1 < Bext < Bc2 where Bc1 and Bc2 denote the lower and the upper critical fields,
respectively. In fact, we restrict ourselves even more. We shall describe the response for the
so-called Bragg-glass phase for which Bragg reflections are observed by small-angle neutron
scattering (Giamarchi and Le Doussal 1995). The flux-line lattice (FLL) which diffracts the
neutron beam will be assumed to be made of stiff flux tubes running along the Z axis, i.e. the
direction of Bext. Hence we neglect the disorder along the Z direction. On the other hand, we
account for the in-plane disorder. Therefore, we are dealing with a two-dimensional system
for which the induction has only a component along the Z direction.

In the case of interest, the width of the field distribution characterizing the induction
field is much smaller than its mean 〈B〉 ≡ 〈B Z (r)〉. r is a two-dimensional vector running
in a plane perpendicular to the flux tubes. With this condition the transverse-field µSR
technique measures the cosine-Fourier transform of the distribution of the component of the
induction field along the Z axis. Because the vortex lattice parameter is much larger than the
crystallographic lattice parameter, the muons probe uniformly the induction field and thus give
access to the distribution of B Z (r) denoted as D(B Z ).

The simplest description of the FLL follows from the inhomogeneous London equation
for the induction. However, it assumes the core radius of each vortex to be negligible. This
assumption is at the origin, for example, of the bad description of the high-induction tail of
the field distribution. In addition, of special concern to us, it does not lead to an explanation
for the observed intrinsic Bext dependence of the amplitude of the Fourier components of
the induction. There is no general theory of B Z (r) valid at arbitrary temperature. The only
practical theory to model the core is due to Ginzburg and Landau (see e.g. Kittel (1996)
for a simple introduction). It is based on a phenomenological expansion of the free energy
in terms of the superconducting order parameter and its gradient. Two length scales are
introduced: the London peneration depth, λL, and the Ginzburg–Landau coherence length,
ξGL. Minimization of the free energy provides two coupled differential equations: one for
the order parameter and one for the currents, that is, for the diamagnetic response of a
superconductor. These two Ginzburg–Landau (GL) equations can be written in terms of
only a single parameter, the so-called Ginzburg–Landau parameter κGL ≡ λL/ξGL. The GL
equations cannot be solved analytically, even in the limit κGL → ∞, which would be sufficient
here. A convenient approximate solution has been given for superconductors with isotropic
planar symmetry (Yaouanc et al 1997). Recently it has been generalized to superconductors
which are anisotropic in the plane perpendicular to Bext (Dalmas de Réotier and Yaouanc, in
preparation).

D(B Z ) should exhibit van Hove singularities at the maximum, minimum and saddle
points of the field distribution. Although usually observed experimentally, these singularities
are always smeared. This arises for instance from the dipole field of the nuclear magnetic
moments contained in the specimen. Also, because of the finite lifetime of the muon, the
distribution from the measured PX(t) is broadened in a similar manner as caused by apodization
of the data. In addition, in a real material the FLL is disordered by the interaction of the flux
tubes with inhomogeneities and defects which act as pinning centres. This leads to a smearing
of the singularities of D(B Z ) and to an increase of its width for a stiff FLL (Brandt 1991).
The disorder is conventionally accounted for by the convolution of the ideal distribution with
a Gaussian function. While this method works quite well numerically for the Bragg-glass
phase (see e.g. Sonier et al 2000), it is not satisfactory because the physics involved is not
clear. Here, we are going to sketch the derivation of a formula for the variance of the FLL
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field distribution, (�Z
v )2, which accounts microscopically for the pinning-induced disorder. A

complete derivation will be presented elsewhere.
B Z (r) is built up from the contribution of all the flux tubes in the FLL. Neglecting the

effect on B Z (r) of the interaction between the fields from the different flux tubes, we write
B Z (r) as a convolution product:

B Z (r) =
∫

bZ (r − r′)�(r′) d2r′. (33)

bZ (r) is the field at the vector position r for a flux tube centred at the origin of the coordinates
and �(r) the flux density. The depression of the superconducting order parameter due to the
overlap of the vortex cores will be approximately described by the (1 − b4) factor (we define
b = 〈B〉/Bc2) to be introduced later on. It is convenient to work in Fourier space, with the
result

B Z (r) =
∫

bZ (q)�(q) exp (iq · r)
d2q

(2π)2
. (34)

The flux tubes are not centred at the ideal positions {i} but at the effective positions {i + ũ(i)}
which deviate from the equilibrium positions by the displacement vectors {ũ(i)}. The density
is therefore written as �(r) = ∑

i δ
[
r − i − ũ(i)

]
. Although this density is not a periodic

function, it can be expanded in terms of Fourier components if the displacement field is smooth
(Giamarchi and Le Doussal 1995): �(r) � s−1

c

∑
G exp {iG · [r − u(r)]}. G is a reciprocal

lattice vector, sc the area of the unit cell and u(r) the displacement of a flux tube as a function
of its real position. This decomposition of the delta function is strictly valid in the absence of
dislocations. With this expression for the density and defining BZ (q) = bZ (q)/sc,

B Z (r) =
∑

G

∫
BZ (q) exp(iq · r)

∫
exp

[−i (q − G) · r′] exp
[−iG · u(r′)

]
d2r′ d2q

(2π)2
.

(35)

To proceed further, we need to remember two points. Only a thermal average of a physical
quantity can be measured and, because we are dealing with a disordered system, an ensemble
average has to be performed. Denoting the thermal average 〈· · ·〉 and the disorder average · · ·,
we derive

(
�Z

v

)2 =
∑
G�=0

∫ ∣∣BZ (q)
∣∣2

∫
exp

[−i (q − G) · r
] CG(r) d2r

d2q
(2π)2

. (36)

We have introduced the translational order correlation function

CG(r) = 〈exp [−iG · u (r)] exp [iG · u(0)]〉. (37)

The information on the disorder is embedded in CG(r). To get a feeling of its meaning we
investigate two asymptotic limits. But first we need to specify BZ (q). For definitiveness we
shall assume the superconductor to be isotropic. Hence, according to the literature (Yaouanc
et al 1997),

BZ (q) = �0

sc
(1 − b4)

wK1(w)

1 + λ2
Lq2

with w2 = ξ2
v q2. (38)

K1(x) is a modified Bessel function. We have defined the length ξv = √
2ξGL(1 + b4)1/2[1 −

2b(1 − b)2]1/2. We denote the flux quantum by �0 (�0 = 2.07 × 10−15 T m2). wK1(w) acts
as a cut-off factor.
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Let us first assume a disorder-free FLL. This means that there is no displacement of the
flux tube positions. Referring to the definition of CG(r), we conclude that CG(r) = 1. Hence∫

exp[−i(q − G) · r]CG(r) d2r = (2π)2δ(q − G) and therefore

(
�Z

v

)2 =
∑
G�=0

∣∣B Z
G

∣∣2 = 3.711 × 10−3 �2
0

λ4
L

f 2
v (b). (39)

The function fv(b) is presented elsewhere (Yaouanc et al 1997). fv(b = 0) = 1 and it decays
monotonically with b. In the other extreme limit, i.e. in the case of extremely strong disorder,
CG(r) is proportional to a delta function and thus

∑
G�=0

∫
exp[−i(q − G) · r]CG(r) d2r = sc.

The integration over q can be done analytically only in the London limit, i.e. wK1(w) → 1.
We obtain (

�Z
v

)2 = 〈B〉�0

4πλ2
L

. (40)

This result was first published by Brandt in 1991.
The functional form of the correlation function CG(r) is discussed by Giamarchi and

Le Doussal (Giamarchi and Le Doussal 1995). It depends on a single length: the in-plane
correlation length of the FLL, RXY

a . Hence, if λL and ξGL are already known or have been
measured by µSR using the usual procedure (see e.g. Sonier et al 2000), our result indicates
that RXY

a can be determined from the measurement of the variance of the FLL field distribution.

5. Conclusions

The purpose of this article has been to show that the µSR techniques allow us to study
quantitatively magnetic excitations, fluctuations and correlation lengths. The framework to
interpret the experimental results uses the linear response theory which has been developed
for many years by scientists involved in neutron experiments. This points out the interest for
the people of the muon and neutron communities to exchange information and even to work
together. This can be done in western Europe since the two existing muon and accelerator-
based neutron sources share common facilities. Neutron scattering is theoretically able to
fully characterize the magnetic property of a compound because it probes its energetic and
spatial characteristics. However, experimental resolutions are such that a magnetic mode with
a fluctuation time slower than a nanosecond or with wavevector smaller than 0.01 Å cannot be
studied. Such modes can be nicely investigated by µSR. Typical new examples discussed
here are the critical magnetic fluctuations of the itinerant electrons in the ferromagnetic
superconductor UGe2 and the density of magnetic excitations in frustrated compounds. In
addition, we point out the possibility of estimating the in-plane correlation in the Bragg-glass
phase of superconductors.

Scheduled technical developments are going to extend the range of applications of the µSR
techniques. We mention first the dedicated low-energy muon spectrometer currently being built
at the Paul Scherrer Institute in Switzerland. It will give the opportunity to study multilayers
from the subnanometre range to the 100 nm region. Secondly, regarding conventional energy
muons, a spectrometer with a tenfold increase in counting rate is envisaged at the muon
pulsed facility located near Oxford in England. The relatively large dimensions required for
a sample to be run at a muon spectrometer have always been a problem. Here also good
news is coming: a sample of 3.74 mg has recently been investigated (Sonier et al 2003).
Concerning measurements under extreme conditions, µSR is well known for the numerous
studies performed at extremely low temperature, down to 13 mK. Currently, external fields up
to 8 T can be applied and it is possible to apply a pressure up to 15 kbar and down to 0.35 K.
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